
Sistema binario
El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en los ordenadores, pues trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en los ordenadores, pues trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
Representación
Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que a su vez pueden ser representados por cualquier mecanismo capaz de estar en dos estados mutuamente exclusivos. Las secuencias siguientes de símbolos podrían ser interpretadas todas como el mismo valor binario numérico:
1 0 1 0 0 1 1 0 1 0
- - - - -
x o x o o x x o x o
y n y n n y y n y n
- - - - -
x o x o o x x o x o
y n y n n y y n y n
Decimal a binario
Se divide el número del sistema decimal entre 2, cuyo resultado entero se vuelve a dividir entre 2, y así sucesivamente. Ordenados los restos, del último al primero, este será el número binario que buscamos.
Se divide el número del sistema decimal entre 2, cuyo resultado entero se vuelve a dividir entre 2, y así sucesivamente. Ordenados los restos, del último al primero, este será el número binario que buscamos.
Ejemplo :
Transformar el número decimal 131 en binario. El método es muy simple: 131 dividido entre 2 da 65 y el resto es igual a 1
65 dividido entre 2 da 32 y el resto es igual a 1
32 dividido entre 2 da 16 y el resto es igual a 0
16 dividido entre 2 da 8 y el resto es igual a 0
8 dividido entre 2 da 4 y el resto es igual a 0
4 dividido entre 2 da 2 y el resto es igual a 0
2 dividido entre 2 da 1 y el resto es igual a 0
1 dividido entre 2 da 0 y el resto es igual a 1
-> Ordenamos los restos, del último al primero: 10000011
65 dividido entre 2 da 32 y el resto es igual a 1
32 dividido entre 2 da 16 y el resto es igual a 0
16 dividido entre 2 da 8 y el resto es igual a 0
8 dividido entre 2 da 4 y el resto es igual a 0
4 dividido entre 2 da 2 y el resto es igual a 0
2 dividido entre 2 da 1 y el resto es igual a 0
1 dividido entre 2 da 0 y el resto es igual a 1
-> Ordenamos los restos, del último al primero: 10000011
en sistema binario, 131 se escribe 10000011
Ejemplo :
Transformar el número decimal 100 en binario.
Otra forma de conversión consiste en un método parecido a la factorización en números primos. Es relativamente fácil dividir cualquier número entre 2. Este método consiste también en divisiones sucesivas. Dependiendo de si el número es par o impar, colocaremos un cero o un uno en la columna de la derecha. Si es impar, le restaremos uno y seguiremos dividiendo entre dos, hasta llegar a 1. Después sólo nos queda tomar el último resultado de la columna izquierda (que siempre será 1) y todos los de la columna de la derecha y ordenar los dígitos de abajo a arriba.
Otra forma de conversión consiste en un método parecido a la factorización en números primos. Es relativamente fácil dividir cualquier número entre 2. Este método consiste también en divisiones sucesivas. Dependiendo de si el número es par o impar, colocaremos un cero o un uno en la columna de la derecha. Si es impar, le restaremos uno y seguiremos dividiendo entre dos, hasta llegar a 1. Después sólo nos queda tomar el último resultado de la columna izquierda (que siempre será 1) y todos los de la columna de la derecha y ordenar los dígitos de abajo a arriba.
Decimal (con decimales) a binario
Para transformar un número del sistema decimal al sistema binario:
Se inicia por el lado izquierdo, multiplicando cada número por 2 (si la parte entera es mayor que 0 en binario será 1, y en caso contrario es 0)
En caso de ser 1, en la siguiente multiplicación se utilizan sólo los decimales.
Después de realizar cada multiplicación, se colocan los números obtenidos en el orden de su obtención.
Algunos números se transforman en dígitos periódicos, por ejemplo: el 0,1
Se inicia por el lado izquierdo, multiplicando cada número por 2 (si la parte entera es mayor que 0 en binario será 1, y en caso contrario es 0)
En caso de ser 1, en la siguiente multiplicación se utilizan sólo los decimales.
Después de realizar cada multiplicación, se colocan los números obtenidos en el orden de su obtención.
Algunos números se transforman en dígitos periódicos, por ejemplo: el 0,1
Binario a decimal
Para realizar la conversión de binario a decimal, realice lo siguiente:
Inicie por el lado derecho del número en binario, cada número multiplíquelo por 2 y elévelo a la potencia consecutiva (comenzando por la potencia 0).
Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.
Inicie por el lado derecho del número en binario, cada número multiplíquelo por 2 y elévelo a la potencia consecutiva (comenzando por la potencia 0).
Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.
Binario a decimal (con decimal binario)
1. Inicie por el lado izquierdo, cada número multiplíquelo por 2 y elévelo a la potencia consecutiva a la inversa(comenzando por la potencia -1). 2.Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.